Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.041
1.
Nutrients ; 16(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38674851

Colorectal cancer stands as the third most prevalent form of cancer worldwide, with a notable increase in incidence in Western countries, mainly attributable to unhealthy dietary habits and other factors, such as smoking or reduced physical activity. Greater consumption of vegetables and fruits has been associated with a lower incidence of colorectal cancer, which is attributed to their high content of fiber and bioactive compounds, such as flavonoids. In this study, we have tested the flavonoids quercetin, luteolin, and xanthohumol as potential antitumor agents in an animal model of colorectal cancer induced by azoxymethane and dodecyl sodium sulphate. Forty rats were divided into four cohorts: Cohort 1 (control cohort), Cohort 2 (quercetin cohort), Cohort 3 (luteolin cohort), and Cohort 4 (xanthohumol cohort). These flavonoids were administered intraperitoneally to evaluate their antitumor potential as pharmaceutical agents. At the end of the experiment, after euthanasia, different physical parameters and the intestinal microbiota populations were analyzed. Luteolin was effective in significantly reducing the number of tumors compared to the control cohort. Furthermore, the main significant differences at the microbiota level were observed between the control cohort and the cohort treated with luteolin, which experienced a significant reduction in the abundance of genera associated with disease or inflammatory conditions, such as Clostridia UCG-014 or Turicibacter. On the other hand, genera associated with a healthy state, such as Muribaculum, showed a significant increase in the luteolin cohort. These results underline the anti-colorectal cancer potential of luteolin, manifested through a modulation of the intestinal microbiota and a reduction in the number of tumors.


Colorectal Neoplasms , Flavonoids , Gastrointestinal Microbiome , Luteolin , Propiophenones , Quercetin , Animals , Luteolin/pharmacology , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome/drug effects , Propiophenones/pharmacology , Flavonoids/pharmacology , Quercetin/pharmacology , Rats , Male , Disease Models, Animal , Azoxymethane , Antineoplastic Agents/pharmacology , Rats, Wistar
2.
Biomed Pharmacother ; 174: 116598, 2024 May.
Article En | MEDLINE | ID: mdl-38615609

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.


Angiopoietin-Like Protein 3 , Diet, High-Fat , Flavonoids , Lipid Metabolism , Lipoprotein Lipase , Liver X Receptors , Propiophenones , Zebrafish , Animals , Liver X Receptors/metabolism , Propiophenones/pharmacology , Humans , Lipid Metabolism/drug effects , Diet, High-Fat/adverse effects , Flavonoids/pharmacology , Lipoprotein Lipase/metabolism , Retinoid X Receptors/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Chalcones/pharmacology , Liver/drug effects , Liver/metabolism
3.
Chem Pharm Bull (Tokyo) ; 72(3): 345-348, 2024.
Article En | MEDLINE | ID: mdl-38556262

Eperisone Hydrochloride was launched in Japan in 1983 and has been used to improve muscle tone and treat spastic paralysis (Originator: Eisai Co., Ltd.). However, its biochemical mechanism of action is unknown. SB Drug Discovery was used to evaluate purinergic P2X (P2X) receptor antagonism using fluorescence. In this study, we discovered that its target protein is the P2X7 receptor. Also, P2X receptor subtype selectivity was high. This finding demonstrates the (Eperisone-P2X7-pain linkage), the validity of P2X7 as a drug target, and the possibility of drug repositioning of Eperisone Hydrochloride.


Muscle Relaxants, Central , Propiophenones , Muscle Relaxants, Central/pharmacology , Muscle Relaxants, Central/therapeutic use , Purinergic P2X Receptor Antagonists/pharmacology , Propiophenones/pharmacology , Propiophenones/therapeutic use , Muscles
4.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article En | MEDLINE | ID: mdl-38397018

Among diverse cancers, pancreatic cancer is one of the most aggressive types due to inadequate diagnostic options and treatments available. Therefore, there is a necessity to use combination chemotherapy options to overcome the chemoresistance of pancreatic cancer cells. Plumbagin and xanthohumol, natural compounds isolated from the Plumbaginaceae family and Humulus lupulus, respectively, have been used to treat various cancers. In this study, we investigated the anticancer effects of a combination of plumbagin and xanthohumol on pancreatic cancer models, as well as the underlying mechanism. We have screened in vitro numerous plant-derived extracts and compounds and tested in vivo the most effective combination, plumbagin and xanthohumol, using a transgenic model of pancreatic cancer KPC (KrasLSL.G12D/+; p53R172H/+; PdxCretg/+). A significant synergistic anticancer activity of plumbagin and xanthohumol combinations on different pancreatic cancer cell lines was found. The combination treatment of plumbagin and xanthohumol influences the levels of B-cell lymphoma (BCL2), which are known to be associated with apoptosis in both cell lysates and tissues. More importantly, the survival of a transgenic mouse model of pancreatic cancer KPC treated with a combination of plumbagin and xanthohumol was significantly increased, and the effect on BCL2 levels has been confirmed. These results provide a foundation for a potential new treatment for pancreatic cancer based on plumbagin and xanthohumol combinations.


Naphthoquinones , Pancreatic Neoplasms , Propiophenones , Mice , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Plant Extracts/pharmacology , Propiophenones/pharmacology , Propiophenones/therapeutic use , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Pancreatic Neoplasms/drug therapy , Apoptosis , Proto-Oncogene Proteins c-bcl-2
5.
J Biol Chem ; 300(2): 105595, 2024 Feb.
Article En | MEDLINE | ID: mdl-38154600

The temperature-sensitive Ca2+-permeable TRPV3 ion channel is robustly expressed in the skin keratinocytes, and its gain-of-function mutations are involved in the pathology of skin lesions. Here, we report the identification of an antispasmodic agent flopropione that alleviates skin inflammation by selective inhibition of TRPV3. In whole-cell patch clamp recordings, flopropione selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 17.8 ± 3.5 µM. At the single-channel level, flopropione inhibits TRPV3 channel open probability without alteration of its unitary conductance. In an in vivo mouse model of skin inflammation induced by the skin sensitizer DNFB, flopropione also alleviates dorsal skin lesions and ear skin swelling. Further molecular docking combined with site-directed mutagenesis reveals that two residues E501 and I505 in the channel S2-helix are critical for flopropione-mediated inhibition of TRPV3. Taken together, our findings demonstrate that the spasmolytic drug flopropione as a selective inhibitor of TRPV3 channel not only provides a valuable tool molecule for understanding of TRPV3 channel pharmacology but also holds repurposing potential for therapy of skin disorders, such as dermatitis and pruritus.


Dermatitis , Propiophenones , TRPV Cation Channels , Animals , Mice , Dermatitis/drug therapy , Keratinocytes/drug effects , Molecular Docking Simulation , Parasympatholytics/pharmacology , Parasympatholytics/therapeutic use , Propiophenones/pharmacology , Propiophenones/therapeutic use , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Mice, Inbred C57BL , Male , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Skin/drug effects
6.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37511484

Xanthohumol is a cancer chemopreventive agent that can interfere with the initiation, promotion, and progression phase of carcinogenesis via a variety of inhibitory mechanisms. Xanthohumol was reported as an effective agent against leukemia/lymphoma cells. In the present study, we investigated the effect of xanthohumol and its natural and semisynthetic derivatives against various canine leukemia/lymphoma cell lines. Xanthohumol, three hops minor prenylflavonoids (xanthohumol C, xanthohumol D, α,ß-dihydroxanthohumol) and four derivatives obtained by biotransformation (xanthohumol 4'-O-ß-D-(4‴-O-methyl)-glucopyranoside) as well as by chemical modification (1″,2″-dihydroxanthohumol K, 2,3-dehydroisoxanthohumol, (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone) were tested for their antiproliferative and pro-apoptotic activities against the following canine leukemia/lymphoma cell lines: CLBL-1 (B-cell lymphoma), CLB70 (B-cell leukemia), and GL-1 (B-cell leukemia). The compounds were tested at a final concentration range of 0.1-30 µM for 48 h. All eight of the tested flavonoids exerted concentration-dependent cytotoxicity in the selected canine lymphoma/leukemia cell lines. Three compounds markedly decreased the viability of all cell lines with IC50 in the range of 0.5 to 8 µM. Double-staining of the treated cells with AnnexinV and propidium iodide revealed that the dying cells were mostly in the late apoptosis stage. ROS production and changes in mitochondrial potential were detected. Western blot analysis showed a decreased expression of Bcl-2. Canine lymphoma and leukemia cell lines are sensitive to xanthohumol derivatives, and the compounds acted through an apoptotic cell-death mechanism. These compounds, either used alone or in combination with other therapies, may be useful for the treatment of canine leukemia/lymphoma.


Leukemia , Lymphoma , Propiophenones , Animals , Dogs , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/chemistry , Leukemia/drug therapy , Propiophenones/pharmacology , Propiophenones/chemistry , Lymphoma/drug therapy , Lymphoma/veterinary , Apoptosis
7.
Molecules ; 28(13)2023 Jul 02.
Article En | MEDLINE | ID: mdl-37446828

Xanthohumol (XN), a natural prenylated flavonoid extracted and isolated from the hop plant (Humulus lupulus), possesses diverse pharmacological activities. Although the metabolites of XN have been investigated in the previous study, a comprehensive metabolic profile has been insufficient in vivo or in vitro until now. The current study was aimed at systematically elucidating the metabolic pathways of XN after oral administration to rats. Herein, a UHPLC-Q-Exactive Orbitrap MS was adopted for the potential metabolites detection. A stepwise targeted matching strategy for the overall identification of XN metabolites was proposed. A metabolic net (53 metabolites included) on XN in vivo and in vitro, as well as the metabolic profile investigation, were designed, preferably characterizing XN metabolites in rat plasma, urine, liver, liver microsomes, and feces. On the basis of a stepwise targeted matching strategy, the net showed that major in vivo metabolic pathways of XN in rats include glucuronidation, sulfation, methylation, demethylation, hydrogenation, dehydrogenation, hydroxylation, and so on. The proposed metabolic pathways in this research will provide essential data for further pharmaceutical studies of prenylated flavonoids and lay the foundation for further toxicity and safety studies.


Flavonoids , Propiophenones , Rats , Animals , Chromatography, High Pressure Liquid , Flavonoids/metabolism , Mass Spectrometry , Propiophenones/pharmacology
8.
Molecules ; 28(3)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36770737

Xanthohumol is a hop-derived flavonoid that has been widely examined for its health-protecting and antitumorigenic properties, but not yet in a natural beer matrix. The aim of the study was to investigate the antitumorigenic potential of a xanthohumol-enriched beer in vivo. Four groups of 4 × 10 nude mice were formed. Following the injection of HeLa tumorigenic cell lines, the treatment groups were administered a xanthohumol supplementation for 100 days, either dissolved in beer or in an ethanolic solution with the same alcohol strength as beer. The control groups received un-supplemented material. The terminal tumor masses, liver weights, and plasma antioxidant capacities (FRAP and ABTS methods) were measured. For the statistical analysis, a two-way ANOVA test was performed (p < 0.05). There were no statistically significant differences in tumor size between the groups. Xanthohumol did not induce higher levels of plasma antioxidant capacity, neither in beer nor in the water-ethanol matrix. The terminal liver weights were significantly higher in the control group receiving the unsupplemented ethanol solution. Xanthohumol dissolved in beer or in the water-alcohol matrix did not have a protective effect on tumor growth, nor did it have a positive effect on plasma antioxidant capacity either. However, beer with added xanthohumol had a less harmful effect on the liver compared to the supplemented water-ethanol solution. Our results indicate the possible negative countereffect of ethanol; however, further investigations are needed.


Antioxidants , Propiophenones , Humans , Mice , Animals , Antioxidants/pharmacology , Antioxidants/analysis , HeLa Cells , Beer/analysis , Mice, Nude , Flavonoids/pharmacology , Flavonoids/analysis , Propiophenones/pharmacology , Ethanol/analysis
9.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article En | MEDLINE | ID: mdl-36293555

Infections with Gram-negative bacteria are still among the leading causes of infection-related deaths. Several studies suggest that the chalcone xanthohumol (XN) found in hop (Humulus lupulus) possesses anti-inflammatory effects. In a single-blinded, placebo controlled randomized cross-over design study we assessed if the oral intake of a single low dose of 0.125 mg of a XN derived through a XN-rich hop extract (75% XN) affects lipopolysaccharide (LPS)-induced immune responses in peripheral blood mononuclear cells (PBMCs) ex vivo in normal weight healthy women (n = 9) (clinicaltrials.gov: NCT04847193) and determined associated molecular mechanisms. LPS-stimulation of PBMCs isolated from participants 1 h after the intake of the placebo for 2 h resulted in a significant induction of pro-inflammatory cytokine release which was significantly attenuated when participants had consumed XN. The XN-dependent attenuation of proinflammatory cytokine release was less pronounced 6 h after the LPS stimulation while the release of sCD14 was significantly reduced at this timepoint. The LPS-dependent activation of hTLR4 transfected HEK293 cells was significantly and dose-dependently suppressed by the XN-rich hop extract which was attenuated when cells were co-challenged with sCD14. Taken together, our results suggest even a one-time intake of low doses of XN consumed in a XN-rich hop extract can suppress LPS-dependent stimulation of PBMCs and that this is related to the interaction of the hop compound with the CD14/TLR4 signaling cascade.


Chalcones , Humulus , Propiophenones , Humans , Female , Lipopolysaccharides , Lipopolysaccharide Receptors , Toll-Like Receptor 4 , Leukocytes, Mononuclear , Endotoxins , HEK293 Cells , Propiophenones/pharmacology , Flavonoids/pharmacology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines
10.
Sci Rep ; 12(1): 14970, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-36056072

Xanthohumol (XN) is a prenylated plant polyphenol that naturally occurs in hops and its products, e.g. beer. It has shown to have anti-inflammatory and angiogenesis inhibiting effects and it prevents the proliferation of cancer cells. These effects could be in particular interesting for processes within the periodontal ligament, as previous studies have shown that orthodontic tooth movement is associated with a sterile inflammatory reaction. Based on this, the study evaluates the anti-inflammatory effect of XN in cementoblasts in an in vitro model of the early phase of orthodontic tooth movement by compressive stimulation. XN shows a concentration-dependent influence on cell viability. Low concentrations between 0.2 and 0.8 µM increase viability, while high concentrations between 4 and 8 µM cause a significant decrease in viability. Compressive force induces an upregulation of pro-inflammatory gene (Il-6, Cox2, Vegfa) and protein (IL-6) expression. XN significantly reduces compression related IL-6 protein and gene expression. Furthermore, the expression of phosphorylated ERK and AKT under compression was upregulated while XN re-established the expression to a level similar to control. Accordingly, we demonstrated a selective anti-inflammatory effect of XN in cementoblasts. Our findings provide the base for further examination of XN in modulation of inflammation during orthodontic therapy and treatment of periodontitis.


Dental Cementum , Propiophenones , Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Humans , Inflammation/drug therapy , Interleukin-6 , Propiophenones/pharmacology
11.
Molecules ; 27(15)2022 Jul 28.
Article En | MEDLINE | ID: mdl-35956774

Herein, we propose two chalcone molecules, (E)-1-(4-methoxyphenyl)-3-(p-tolyl) prop-2-en-1-one and (E)-3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl) prop-2-en-1-one, based on the anticancer bioactive molecule Xanthohumol, which are suitable for further in vitro and in vivo studies. Their ability to create stable complexes with the antiapoptotic X-linked IAP (XIAP) protein makes them promising anticancer agents. The calculations were based on ligand-based and structure-based virtual screening combined with the pharmacophore build. Additionally, the structures passed Lipinski's rule for drug use, and their reactivity was confirmed using density functional theory studies. ADMET studies were also performed to reveal the pharmacokinetic potential of the compounds. The candidates were chosen from 10,639,400 compounds, and the docking protocols were evaluated using molecular dynamics simulations.


Apoptosis Regulatory Proteins , Propiophenones , Flavonoids , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Propiophenones/pharmacology
13.
Prog Biophys Mol Biol ; 172: 3-14, 2022 08.
Article En | MEDLINE | ID: mdl-35405185

Today, there is a growing interest nowadays in the use of herbal substances as cancer therapeutic agents. Over recent years, Xanthohumol (XTL) has been brought out as a prenylated chalcone that is found in hops (Humulus lupulus) and beer. XTL is being investigated for its potential properties, and it has been found to have various biological effects, including anti-microbial, anti-viral, and immunomodulatory. Other than these biological effects, it has also been found that XTL exerts anti-tumor effects. In the beginning, XTL, by modulating cell signaling pathways, including ERK, AKT, NF-κB, AMPK, Wnt/ß-catenin, and Notch signaling in cancer cells, inhibits tumor cell functions. Moreover, XTL, by inducing apoptotic pathways, either intrinsic or extrinsic, promotes cancer cell death and arrests the cell cycle. Furthermore, XTL inhibits metastasis, angiogenesis, cancer stemness, drug resistance, cell respiration, etc., which results in tumor aggressiveness inhibition. XTL has low solubility in water, and it has been hypothesized that some modifications, including biotinylation, can improve its pharmacogenetic characteristics. Additionally, XTL derivates such as dihydroXTL and tetrahydroXTL can be helpful for more anti-tumor activities. Using XTL with other anti-tumor agents is another approach to overcome tumor cell resistance. XTL or its derivatives, it is believed, might provide novel chemotherapeutic methods in future cancer therapy.


Antineoplastic Agents , Humulus , Neoplasms , Propiophenones , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Neoplasms/drug therapy , Propiophenones/pharmacology , Propiophenones/therapeutic use
14.
Molecules ; 27(4)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35209070

Discovering new and effective drugs for the treatment of Alzheimer's disease (AD) is a major clinical challenge. This study focuses on chemical modulation of the gut microbiome in an established murine AD model. We used the 16S rDNA sequencing technique to investigate the effect of xanthohumol (Xn) on the diversity of intestinal microflora in 2-month- and 6-month-old APP/PS1 mice, respectively. APP/PS1 and wild-type mice were treated by gavage with corn oil with or without Xn every other day for 90 days. Prior to and following treatment, animals were tested for spatial learning, cognitive and memory function. We found Xn reduced cognitive dysfunction in APP/PS1 mice and significantly regulated the composition and abundance of gut microbiota both in prevention experiments (with younger mice) and therapeutic experiments (with older mice). Differential microflora Gammaproteobacteria were significantly enriched in APP/PS1 mice treated with Xn. Nodosilineaceae and Rikenellaceae may be the specific microflora modulated by Xn. The penicillin and cephalosporin biosynthesis pathway and the atrazine degradation pathway may be the principal modulation pathways. Taken together, oral treatment with Xn may have a neuroprotective role by regulating the composition of intestinal microflora, a result that contributes to the scientific basis for a novel prophylactic and therapeutic approach to AD.


Biological Products/pharmacology , Flavonoids/pharmacology , Gastrointestinal Microbiome/drug effects , Metabolome/drug effects , Propiophenones/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Biodiversity , Biological Products/chemistry , Cognition/drug effects , Disease Models, Animal , Flavonoids/chemistry , Metagenome , Metagenomics/methods , Mice , Mice, Transgenic , Propiophenones/chemistry
15.
Oxid Med Cell Longev ; 2022: 9523491, 2022.
Article En | MEDLINE | ID: mdl-35082973

Ferroptosis is an iron-dependent form of cell death caused by the inactivation of glutathione peroxidase 4 (GPX4) and accumulation of lipid peroxides. Ferroptosis has been found to participate in the ischemia-reperfusion (I/R) injury, leading to heart dysfunction and myocardial cell death. Xanthohumol (XN), a prenylated flavonoid isolated from Humulus lupulus, has multiple pharmacological activities, such as anti-inflammatory and antioxidant. This study is aimed at investigating whether XN could attenuate the I/R-induced ferroptosis in cardiomyocytes and the underlying mechanisms. Cardiomyocytes were treated with Fe-SP and RSL3, and the rat hearts were treated with I/R. The results from the present study show that XN was able to protect cardiomyocytes against Fe-SP- and RSL3-induced ferroptotic cell death by decreasing the production of lipid peroxidation and ROS, chelating iron, reducing the NRF2 protein level, and modulating the protein levels of GPX4. Moreover, XN significantly decreased the mRNA levels of ferroptosis markers, Ptgs2 and Acsl4, and the protein levels of ACSL4 and NRF2 and modulated the protein levels of GPX4 in I/R-treated hearts. The findings from the present study suggest that XN might have the therapeutic potential for the I/R-induced ferroptosis injury.


Ferroptosis/drug effects , Flavonoids/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Myocardium/pathology , Propiophenones/therapeutic use , Animals , Flavonoids/pharmacology , Propiophenones/pharmacology , Rats , Rats, Sprague-Dawley
16.
Anticancer Agents Med Chem ; 22(3): 418-432, 2022.
Article En | MEDLINE | ID: mdl-33622230

The overwhelming global burden of cancer has posed numerous challenges and opportunities for developing anti-cancer therapies. Phytochemicals have emerged as promising synergistic compounds with potential anti-cancer effects to supplement chemo- and immune-therapeutic regimens. Anti cancer synergistic effects have been investigated in the interaction between phytocompounds derived from flavonoids such as quercetin, apigenin, kaempferol, hesperidin, emodin, etc., and conventional drugs. Xanthohumol is one of the prenylated phytoflavonoid that has demonstrated key anti-cancer activities in in vitro (anti proliferation of cancer cell lines) and in vivo (animal models of xenograft tumours) studies, and has been explored from different dimensions for targeting cancer subtypes. In the last decade, xanthohumol has been investigated how it induces the anti- cancer effects at cellular and molecular levels. The different signalling cascades and targets of xanthohumol are summarized in this review. Overall, this review summarizes the current advances made in the field of natural compounds with special reference to xanthohumol and its promising anti-cancer effects to inhibit tumour progression. The present review has also discussedthe potential of xanthohumol transitioning into a leadingcandidate from nano-therapy viewpoint along with the challenges which need to be addressed for extensive preclinical and clinical anti-cancer studies.


Antineoplastic Agents, Phytogenic/pharmacology , Flavonoids/pharmacology , Neoplasms/drug therapy , Phytochemicals/pharmacology , Propiophenones/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Flavonoids/chemistry , Humans , Neoplasms/pathology , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Phytochemicals/chemistry , Propiophenones/chemistry
17.
Int J Food Sci Nutr ; 73(4): 471-479, 2022 Jun.
Article En | MEDLINE | ID: mdl-34879764

Xanthohumol (XN) is a prenylated flavonoid known for its antioxidant and anti-inflammatory effects and has been studied as an anti-cancer agent. In this study, we aimed at analysing the effect of XN on a primary colorectal adenocarcinoma cell line, HT29, on cell viability, inflammatory and antioxidant gene expression, and metabolism. For this purpose, cells were treated with 10 nM and 10 µM XN, and cell viability, H2O2 production, lipid peroxidation and gene expression of inflammatory, antioxidant, and mitochondrial-related genes, as well as protein levels of metabolic enzymes, were determined. Results showed no significant effects on cell viability and a general decrease in pro-inflammatory, antioxidant and mitochondrial biogenesis gene expression with the lower concentration of XN. Furthermore, glucose and oxidative metabolism enzymes were also reduced. These results suggest that XN treatment, at low doses, could stop the proliferation and progression of HT29 cells by downregulating inflammatory signals and cell metabolism.


Colonic Neoplasms , Propiophenones , Antioxidants/pharmacology , Colonic Neoplasms/drug therapy , Flavonoids/pharmacology , HT29 Cells , Humans , Hydrogen Peroxide , Inflammation/drug therapy , Propiophenones/pharmacology
18.
Cells ; 10(12)2021 12 16.
Article En | MEDLINE | ID: mdl-34944062

Pancreatic cancer is a disease in which deregulation of signaling pathways plays a key role, thus searching for their novel modulators is a promising therapeutic strategy. Hence, in this study, the effect of phytochemical combinations on the canonical and non-canonical activation of Nrf2 and its interaction with the NF-κB pathway was evaluated in extensively proliferating pancreatic cancer cell line, PSN-1, in comparison to non-cancerous MS1 cells. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cell survival were assessed in PSN-1 cells. The tumor burden was evaluated in mice carrying xenografts. PSN-1 cells were more sensitive to the tested compounds as compared to the MS1 cell line. Combination of xanthohumol and phenethyl isothiocyanate was more effective than single compounds at decreasing the canonical and non-canonical activation of Nrf2 in PSN-1 cancer cells. Decreased activation of NF-κB, and subsequent reduced cytosolic COX-2 and nuclear STAT3 level indicated their anti-inflammatory and pro-apoptotic activities. In vivo studies showed the partial response in groups treated with xanthohumol or the combination of xanthohumol and phenethyl isothiocyanate. Overall, these results suggest that the combination of xanthohumol and phenethyl isothiocyanate may be a promising therapeutic candidate against pancreatic cancer.


Cyclooxygenase 2/genetics , NF-E2-Related Factor 2/genetics , Pancreatic Neoplasms/drug therapy , STAT3 Transcription Factor/genetics , Animals , Apoptosis/drug effects , Biological Products/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Flavonoids/pharmacology , Humans , Isothiocyanates/pharmacology , Mice , NF-E2-Related Factor 2/antagonists & inhibitors , NF-kappa B/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phytochemicals/pharmacology , Propiophenones/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
19.
Molecules ; 26(23)2021 Nov 24.
Article En | MEDLINE | ID: mdl-34885687

Hops contain flavonoids that have sedative and sleep-promoting activities such as α-acid, ß-acid, and xanthohumol. In this study, the sleep-enhancing activity of a Saaz-Saphir hops mixture was measured. In the caffeine-induced insomnia model, the administration of a Saaz-Saphir mixture increased the sleep time compared to Saaz or Saphir administration alone, which was attributed to the increase in NREM sleep time by the δ-wave increase. Oral administration of the Saaz-Saphir mixture for 3 weeks increased the γ-amino butyric acid (GABA) content in the brain and increased the expression of the GABAA receptor. As the GABA antagonists picrotoxin and bicuculline showed a decrease in sleep activity, it was confirmed that the GABAA receptor was involved in the Saaz-Saphir mixture activity. In addition, the GABAA receptor antagonist also reduced the sleep activity induced by xanthohumol and humulone contained in the Saaz-Saphir mixture. Therefore, xanthohumol and humulone contained in the Saaz-Saphir mixture showed sleep-promoting activity mediated by the GABAA receptors. The mixture of the Saaz and Saphir hop varieties may thus help mitigate sleep disturbances compared to other hop varieties.


Cyclohexenes/pharmacology , Flavonoids/pharmacology , Humulus/chemistry , Propiophenones/pharmacology , Receptors, GABA-A/genetics , Sleep Initiation and Maintenance Disorders/drug therapy , Terpenes/pharmacology , Acids/chemistry , Animals , Bicuculline/pharmacology , Caffeine/adverse effects , Cyclohexenes/chemistry , Disease Models, Animal , Electroencephalography , Flavonoids/chemistry , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacology , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Mice , Picrotoxin/pharmacology , Propiophenones/chemistry , Sleep/drug effects , Sleep/physiology , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/pathology , Terpenes/chemistry , gamma-Aminobutyric Acid/genetics
20.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article En | MEDLINE | ID: mdl-34830015

Coronaviruses cause diseases in humans and livestock. The SARS-CoV-2 is infecting millions of human beings, with high morbidity and mortality worldwide. The main protease (Mpro) of coronavirus plays a pivotal role in viral replication and transcription, which, in theory, is an attractive drug target for antiviral drug development. It has been extensively discussed whether Xanthohumol is able to help COVID-19 patients. Here, we report that Xanthohumol, a small molecule in clinical trials from hops (Humulus lupulus), was a potent pan-inhibitor for various coronaviruses by targeting Mpro, for example, betacoronavirus SARS-CoV-2 (IC50 value of 1.53 µM), and alphacoronavirus PEDV (IC50 value of 7.51 µM). Xanthohumol inhibited Mpro activities in the enzymatical assays, while pretreatment with Xanthohumol restricted the SARS-CoV-2 and PEDV replication in Vero-E6 cells. Therefore, Xanthohumol is a potent pan-inhibitor of coronaviruses and an excellent lead compound for further drug development.


3C Viral Proteases/antagonists & inhibitors , Flavonoids/chemistry , Propiophenones/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , 3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Alphacoronavirus/enzymology , Alphacoronavirus/physiology , Amino Acid Sequence , Animals , Binding Sites , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19/virology , Catalytic Domain , Chlorocebus aethiops , Coronavirus/enzymology , Coronavirus/physiology , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Molecular Docking Simulation , Propiophenones/metabolism , Propiophenones/pharmacology , Propiophenones/therapeutic use , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2/isolation & purification , Sequence Alignment , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
...